
Lock-free/Wait-free
For non-blocking concurrent operations

Non-blocking
• Surprisingly lock-free and wait-free do not mean your

application does not lock or wait. Here are the definitions.

• From Wikipedia

• In computer science, an algorithm is called non-blocking if
failure or suspension of any thread cannot cause failure or
suspension of another thread; for some operations, these
algorithms provide a useful alternative to
traditional blocking implementations. A non-blocking
algorithm is lock-free if there is guaranteed system-
wide progress, and wait-free if there is also guaranteed
per-thread progress.

Why Non-blocking
• Avoid issues in standard multi-threading/processes

• Such as mutexes, semaphores etc.

• Deadlocks

• Live-locks

• Priority Inversions

• Resource starvation due to many processes locking
the same resources.

Tools for Non-Blocking

• Atomic Operations

• Compare and Swap (CAS)

• Fetch and Add (FFA)

• Future discussions, Read-Copy-Update and the
Linux Kernel

Atomic Operations

• To accomplish non-blocking there has to be
some “atomic” operations that are guaranteed to
perform without corruption or interference from
competing threads or processes.

• Some algorithms require “atomic” to be applied
to the MMA controller as well.

Compare and Swap
• Wikipedia pseudo code:

function cas(p : pointer to int, old : int, new : int) returns bool
{
 if *p ≠ old {
 return false
 }
 *p ← new
 return true
}

ABA Problem
• CAS has one issue to deal with. Again from

Wikipedia:

Some CAS-based algorithms are affected by and must handle the problem of
a false positive match, or the ABA problem. It's possible that between the time
the old value is read and the time CAS is attempted, some other processors or
threads change the memory location two or more times such that it acquires a
bit pattern which matches the old value. The problem arises if this new bit
pattern, which looks exactly like the old value, has a different meaning: for
instance, it could be a recycled address, or a wrapped version counter.

There are simple ways to deal with this, but are scenario
dependent.

Concurrent Linked List

• Paper illustrating:

• http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=1FC420B6D62DF1F27CD7
8AFCF9F8CB78?
doi=10.1.1.41.9506&rep=rep1&type=pdf

• Uses CAS

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1FC420B6D62DF1F27CD78AFCF9F8CB78?doi=10.1.1.41.9506&rep=rep1&type=pdf

• The paper is a pdf that prevents me from copy
and pasting text, so I am either taking
screenshots or paraphrasing.

• This is involved gentlemen, please bear with me.

• To implement a lock free linked list, access is trivial, but deletions cause mucho
problemos.

• If process a is deleting a cell, and process b is deleting an adjacent cell, the integrity of
the list is at risk. So the paper describes the solution as follows:

• The linked list is made up of normal cells which have a next field and all content fields.

• The linked list also has auxiliary cells which consist only of the next field.

• Each normal cell must be preceded by and succeeded by auxiliary cells.

• There can be any number of auxiliary cells between normal cells but there must be at
least one.

• This list also has 2 dummy cells, the first and last cells in the list. First points to a
dummy cell and Last points to a dummy cell as well.

• The cursor is implemented by 3 pointers, pre-auxiliary cell, normal cell and post-
auxiliary cell.

• By interposing auxiliary cells, multiple threads manipulating adjacent cells will not
interfere with each other, assuring list integrity. CAS ensure’s list integrity if more then
one thread is accessing the same cell.

The structure of the cursor should be:

c.pre_aux – auxiliary cell before
c.target - is a pointer to the cell the cursor is visiting
c.pre_cell – the normal cell
c.post_aux – auxiliary cell afterwards

The paper mentions if c.pre-aux.next = c.target we have a
valid cursor.

Not all aspects of this paper I fully understand. At this time I
am not sure what the difference of c.target and c.pre_cell is.

I will admit I do not
completely

understand this
slide.

According to the paper, this algorithm can be
adapted for use in Binary Search Trees, and I

suppose B-Tree’s as well.

Fetch and Add
<< atomic >>
function FetchAndAdd(address location, int inc) {
 int value := *location
 *location := value + inc
 return value
}

http://chaoran.me/assets/pdf/wfq-ppopp16.pdf

https://github.com/chaoran/fast-wait-free-queue

http://chaoran.me/assets/pdf/wfq-ppopp16.pdf
https://github.com/chaoran/fast-wait-free-queue

A Ticket Lock/FFA Concurrent Queue

 record locktype {
 int ticketnumber
 int turn
 }
 procedure LockInit(locktype* lock) {
 lock.ticketnumber := 0
 lock.turn := 0
 }
 procedure Lock(locktype* lock) {
 int myturn := FetchAndIncrement(&lock.ticketnumber)
 //must be atomic, since many threads might ask for a lock at the same time
 while lock.turn ≠ myturn
 skip // spin until lock is acquired
 }
 procedure UnLock(locktype* lock) {
 FetchAndIncrement(&lock.turn)
 //this need not be atomic, since only the possessor of the lock will execute this
 }

Future Talk

• The Linux Kernel uses an atomic operation RCU

• Read-Copy-Update

• In multiple places to control concurrency with
user pages and direct I/O.

• This is the work of Nick Piggin

Interesting Reading
• https://en.wikipedia.org/wiki/Fetch-and-add

• https://en.wikipedia.org/wiki/Compare-and-swap

• https://en.wikipedia.org/wiki/Ticket_lock

• https://en.wikipedia.org/wiki/Read-copy-update

• http://lwn.net/Articles/275808/

• http://lwn.net/Articles/291826/

https://en.wikipedia.org/wiki/Fetch-and-add
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Ticket_lock
https://en.wikipedia.org/wiki/Read-copy-update
http://lwn.net/Articles/275808/

These are here in case they come up.
Otherwise please ignore.

Live Lock
Wikipedia:

A livelock is similar to a deadlock, except that the
states of the processes involved in the livelock
constantly change with regard to one another, none
progressing. This term was defined formally at
some time during the 1970s—an early sighting in
the published literature is in Babich's 1979 article
on program correctness.[10] Livelock is a special
case of resource starvation; the general definition
only states that a specific process is not
progressing.

Priority Inversion
Wikipedia:

In computer science, priority inversion is a problematic scenario in scheduling in which a high
priority task is indirectly preempted by a lower priority task effectively "inverting" the relative
priorities of the two tasks.

Consider two tasks H and L, of high and low priority respectively, either of which can acquire
exclusive use of a shared resource R. If H attempts to acquire R after L has acquired it, then H
becomes blocked until L relinquishes the resource. Sharing an exclusive-use resource (R in this
case) in a well-designed system typically involves L relinquishing R promptly so that H (a higher
priority task) does not stay blocked for excessive periods of time. Despite good design, however,
it is possible that a third task M of medium priority (p(L) < p(M) < p(H), where p(x) represents the
priority for task x) becomes runnable during L's use of R. At this point, M being higher in priority
than L, preempts L, causing L to not be able to relinquish R promptly, in turn causing H—the
highest priority process—to be unable to run. This is called priority inversion where a higher
priority task is preempted by a lower priority one.

https://en.wikipedia.org/wiki/Read-copy-update

RCU

https://en.wikipedia.org/wiki/Read-copy-update

