
Lock-free/Wait-free
For non-blocking concurrent operations



Non-blocking
• Surprisingly lock-free and wait-free do not mean your 

application does not lock or wait.   Here are the definitions. 

• From Wikipedia 

• In computer science, an algorithm is called non-blocking if 
failure or suspension of any thread cannot cause failure or 
suspension of another thread; for some operations, these 
algorithms provide a useful alternative to 
traditional blocking implementations. A non-blocking 
algorithm is lock-free if there is guaranteed system-
wide progress, and wait-free if there is also guaranteed 
per-thread progress.



Why Non-blocking
• Avoid issues in standard multi-threading/processes 

• Such as mutexes, semaphores etc. 

• Deadlocks 

• Live-locks 

• Priority Inversions 

• Resource starvation due to many processes locking 
the same resources.



Tools for Non-Blocking

• Atomic Operations 

• Compare and Swap (CAS) 

• Fetch and Add (FFA) 

• Future discussions, Read-Copy-Update and the 
Linux Kernel



Atomic Operations

• To accomplish non-blocking there has to be 
some “atomic” operations that are guaranteed to 
perform without corruption or interference from 
competing threads or processes. 

• Some algorithms require “atomic” to be applied 
to the MMA controller as well.



Compare and Swap
• Wikipedia pseudo code: 

function cas(p : pointer to int, old : int, new : int) returns bool 
{
    if *p ≠ old {
        return false
    }
    *p ← new
    return true
}



ABA Problem
• CAS has one issue to deal with.  Again from 

Wikipedia:

Some CAS-based algorithms are affected by and must handle the problem of 
a false positive match, or the ABA problem. It's possible that between the time 
the old value is read and the time CAS is attempted, some other processors or 
threads change the memory location two or more times such that it acquires a 
bit pattern which matches the old value. The problem arises if this new bit 
pattern, which looks exactly like the old value, has a different meaning: for 
instance, it could be a recycled address, or a wrapped version counter.

There are simple ways to deal with this, but are scenario 
dependent.



Concurrent Linked List

• Paper illustrating: 

• http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=1FC420B6D62DF1F27CD7
8AFCF9F8CB78?
doi=10.1.1.41.9506&rep=rep1&type=pdf 

• Uses CAS

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1FC420B6D62DF1F27CD78AFCF9F8CB78?doi=10.1.1.41.9506&rep=rep1&type=pdf


• The paper is a pdf that prevents me from copy 
and pasting text, so I am either taking 
screenshots or paraphrasing.



• This is involved gentlemen, please bear with me. 

• To implement a lock free linked list, access is trivial, but deletions cause mucho 
problemos. 

• If process a is deleting a cell, and process b is deleting an adjacent cell, the integrity of 
the list is at risk.   So the paper describes the solution as follows: 

• The linked list is made up of normal cells which have a next field and all content fields. 

• The linked list also has auxiliary cells which consist only of the next field. 

• Each normal cell must be preceded by and succeeded by auxiliary cells. 

• There can be any number of auxiliary cells between normal cells but there must be at 
least one. 

• This list also has 2 dummy cells, the first and last cells in the list.   First points to a 
dummy cell and Last points to a dummy cell as well. 

• The cursor is implemented by 3 pointers, pre-auxiliary cell, normal cell and post-
auxiliary cell. 

• By interposing auxiliary cells, multiple threads manipulating adjacent cells will not 
interfere with each other, assuring list integrity.  CAS ensure’s list integrity if more then 
one thread is accessing the same cell.



The structure of the cursor should be: 

c.pre_aux – auxiliary cell before 
c.target  - is a pointer to the cell the cursor is visiting 
c.pre_cell – the normal cell 
c.post_aux – auxiliary cell afterwards 

The paper mentions if c.pre-aux.next = c.target we have a 
valid cursor. 

Not all aspects of this paper I fully understand.  At this time I 
am not sure what the difference of c.target and c.pre_cell is.





I will admit I do not 
completely 

understand this 
slide.



According to the paper, this algorithm can be 
adapted for use in Binary Search Trees, and I 

suppose B-Tree’s as well.



Fetch and Add
<< atomic >>
function FetchAndAdd(address location, int inc) {
    int value := *location
    *location := value + inc
    return value
}

http://chaoran.me/assets/pdf/wfq-ppopp16.pdf

https://github.com/chaoran/fast-wait-free-queue

http://chaoran.me/assets/pdf/wfq-ppopp16.pdf
https://github.com/chaoran/fast-wait-free-queue


A Ticket Lock/FFA Concurrent Queue

 record locktype {
    int ticketnumber
    int turn
 }
 procedure LockInit( locktype* lock ) {
    lock.ticketnumber := 0
    lock.turn := 0
 }
 procedure Lock( locktype* lock ) {
    int myturn := FetchAndIncrement( &lock.ticketnumber ) 
    //must be atomic, since many threads might ask for a lock at the same time
    while lock.turn ≠ myturn 
        skip // spin until lock is acquired
 }
 procedure UnLock( locktype* lock ) {
    FetchAndIncrement( &lock.turn ) 
 //this need not be atomic, since only the possessor of the lock will execute this
 }



Future Talk

• The Linux Kernel uses an atomic operation RCU 

• Read-Copy-Update 

• In multiple places to control concurrency with 
user pages and direct I/O. 

• This is the work of Nick Piggin



Interesting Reading
• https://en.wikipedia.org/wiki/Fetch-and-add 

• https://en.wikipedia.org/wiki/Compare-and-swap 

• https://en.wikipedia.org/wiki/Ticket_lock 

• https://en.wikipedia.org/wiki/Read-copy-update 

• http://lwn.net/Articles/275808/ 

• http://lwn.net/Articles/291826/

https://en.wikipedia.org/wiki/Fetch-and-add
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Ticket_lock
https://en.wikipedia.org/wiki/Read-copy-update
http://lwn.net/Articles/275808/


These are here in case they come up. 
Otherwise please ignore.







Live Lock
Wikipedia: 

A livelock is similar to a deadlock, except that the 
states of the processes involved in the livelock 
constantly change with regard to one another, none 
progressing. This term was defined formally at 
some time during the 1970s—an early sighting in 
the published literature is in Babich's 1979 article 
on program correctness.[10] Livelock is a special 
case of resource starvation; the general definition 
only states that a specific process is not 
progressing.



Priority Inversion
Wikipedia: 

In computer science, priority inversion is a problematic scenario in scheduling in which a high 
priority task is indirectly preempted by a lower priority task effectively "inverting" the relative 
priorities of the two tasks. 

Consider two tasks H and L, of high and low priority respectively, either of which can acquire 
exclusive use of a shared resource R. If H attempts to acquire R after L has acquired it, then H 
becomes blocked until L relinquishes the resource. Sharing an exclusive-use resource (R in this 
case) in a well-designed system typically involves L relinquishing R promptly so that H (a higher 
priority task) does not stay blocked for excessive periods of time. Despite good design, however, 
it is possible that a third task M of medium priority (p(L) < p(M) < p(H), where p(x) represents the 
priority for task x) becomes runnable during L's use of R. At this point, M being higher in priority 
than L, preempts L, causing L to not be able to relinquish R promptly, in turn causing H—the 
highest priority process—to be unable to run. This is called priority inversion where a higher 
priority task is preempted by a lower priority one. 



https://en.wikipedia.org/wiki/Read-copy-update

RCU

https://en.wikipedia.org/wiki/Read-copy-update

