VROCESS INANAGETTENT
I PEKL

Houston Perl Mongers
November 12, 2020

.

OVERVIEW

¢ Part | — Introduction to the Pain

What's a process?

Process control in userland (i.e., the shell)

Processes versus Threads

Note about Perl ithreads™ :
Perl's f or k %

® oo

¢ Part || — Making It Less Painful

¢ Parallel::ForkManager “family”
¢ Perl's Multi-core Engine (MCE) Module
¢ Other interesting Perl modules

NOT COVERED

¢ Efficient IPC among fork'ed perl processes
(though this is an interesting topic)

¢ Anything related to “Perl threads” (ithreads)

¢ \Work scheduling and complicated process man-
agement

¢ “async” frameworks or higher level programming
models

VAKT |

WHAT S A VROCESS?

Operating System concept

How the OS manages “work” and allocation of
sytem resources (time on CPU, memory, network,
file system, etc)

e.g., running a basic Perl script generates a single
process

Most processes we write are single lines of execu-
tion —i.e., not “parallel” or “concurrent”

THREADS ' = PROCESSES

Threads are “light weight” and communicate via shared
memory (with “main” thread and sibling threads); all
“threads” are part of a single parent logical OS process

Forked processes are full weighted process and do not
share memory with parent or siblings, therefore copying all
of the memory related is required

Perl doesn't have 'real' threads and anyone who says it
does is lying or ignorant (I usually assume the latter)

For 'real' threading, see: QpenMP, pthreads, or the Qore
scripting language

NOTE ABOUT VERL ITHRKEADS

(TIREH TV TTT

| L L

-

NI,
UL

Best Summary on why “ithreads” suck I've found:
https://metacpan.org/pod/Coro#WINDOWS-PROCESS-EMULATION

\ 4
4
4
\ 4
4
4

WEKLAND FROCESS CONTROL*®

*this is a grossly inadequate list - “ddg for much more info”

Shell (e.g., bash) commands and hints:

<ctrl-z> -
sends a process running into a suspended state
fg
resumes suspended process into the foreground
bg
resumes supended process into the background
commandé&
sends a shell command into the background, creates a “child” prcocess
(command) &
“fire and forget” command in subshell, asynchronously
wai t
foreground script control flow aware of child processes

SCKRIPTED VROCESS CONTKOL
bash EXAITPLE

. Parent process Id

parentPID= Child process Id
for i 1in X

J/ sleep 1;
echo * ~ Child's body

L sleep , (

& _/
childPID=
echo

Parent blocking “wai t ” for ALL
~ children to return

SCKRIPTED VROCESS CONTKOL
bash EXAITPLE

~_ “Throttles” number of concurrent child processes using a
7 $COUNT, i f /t hen, and multiple wai t s

Child's body
8| &

P
/
sleep//z/echo ; Sleep

COUNT=%

it 4
echo
echo
ERRS
echo

wai t for remaining child processes if less than
$MAX CHI LD

: then

wal t

bash's “wai t ” will wait for ALL child processes

.
4

1 11

¢ perl's“wai t”is blocking until ONE of any of the
parent's children finish

] 13

¢ perl's“wait " returns “- 17 if there are no child pro-
cesses still running

¢ “blocking” wait for all in per | requires checking until it
returns “- 1”

(0 <) { }s

SCAIVTED PROCESS CONTAOL
per| CXAIMPLE

“autoflush” for STDOUT Child process Id

use strict; C Parent process Id
-G all to f or k / P
use wa&n4¢@§;; /

o

my Schild pid = fork(): .
CHILD SUBSHELL: Child's body
if (0 == $child_pid) { s

}
PARENT_PROCESS:

if (< $child pid 2 {
print $%

f or k returns:

< wait) { } - “0” for the child process
; - PID of child process for the Parent process

Note: this is how you dispatch child/parent
code

SCAIVTED PROCESS CONTAOL
per| CAAMPLE

~__“autoflush” for STDOUT
use strict;

use warnings;—
> Call to f or k

++5 4

my $MAX_CHILD

my $COUNT ;

my $parent pid = $%;

for my $i (..) {
my $child pid = fork();
++$COUNT;

CHILD_SUBSHELL:

if ($child_pid) {

$parent pid

PARENT PROCESS:
if (CQu< $child _pid) {

$MAX_CHILD

while (wait > f or k returns:

$CQUNT
print - “0” for the child process

} - PID of child process for the Parent process
}
if ($COUNT > 0) {

print $COUNT

while (wait > 0) {}
}
print

wal t pi d

¢ per | provides for additional precision in
blocking in the parent

¢ \Whereas wali t proceeds if any child finish-
es or there are no children

¢ wal t pi d will wait for a specific child PID to
complete

use strict;
use warnings;
++5 | ;

my @childs = ();
for my $i (..) {

my $child_pid = fork();

CHILD_SUBSHELL:
if (== $child _pid) {
sleep
print
sleep
exit;

}

PARENT_PROCESS:
if (< $child _pid) {
print
push @childs, $child pid;

}

foreach my $childpid (@childs) {

——blocking

waitpid($childpid,0); <&
print $childpid
}
print

strict;

warnines:
e warnings

5) A
my $child _pid = fork();
CHILD SUBSHELL:
if (== $child_pid) {
sleep 1;
print
sleep 5;
exit;

}
PARENT _PROCESS:
if (0 < $child_pid) {
print
push @childs, $child_pid;

“
while (my $childpid = pop @childs) { N

~___.non-blocking

if (0 == waitpid($childpid, WOHANGM)—{ —
print $childpid
push @childs, $childpid;
}
else {
$childpid

wai t pi d AND $SI G CHLD}

Use strict: Non-blocking wai t pi d in
use warm‘nés; $SI G CHLD} handler

++5 | ;
use POSIX

my %child _status = ();
$SIG{ } = sub {
while ((my $child = waitpid(-1, WNOHANG)) >) {
$child _status{$child} = $child

O
.) A
my $child _pid = fork();
CHILD_ SUBSHELL:
if (== $child pid) {
sleep 1;
print
sleep
exit;

}
PARENT_PROCESS:
it (< $child pid) {
print
push @childs, $child pid;

~_ Blocking

} [11 . ” .
spin” wait

while (0 < wait) {}; <&

foreach my $child (keys %child status) {
print $child status{$child};

}
print

STRENGTIHS AND HTOD Wﬁﬁf TAGES OF WING
as

Straightforward

.
4

¢ Child processes are isolated from execution con-
text (no accidentaly running of current script in
child)

¢ Does what | mean (e.g., wai t is “wait for all”)

¢ [ess flexibility means it's hard to get too complex
without meaning to

STRENGTHS AND AD W{Wﬁ GES OF WING
per

¢ Perl language makes if much easier to manage child
processes to achieve maximum throughput (target
100% active child PIDs for duration, load balancing,
etc)

¢ CPAN is full of interesting “helper’” modules for man-
aging external child processes,

fork /Jsystem

¢ Perl provides several ways to spawn subprocess-
es:fork,systemand conmand’

¢ command (backticks) semantics is also provid-
ed for in the shell (e.g., bash)

¢ systemand command facilities in Perl are
strictly for launching subshells in which the gener-
Ic commands are executed

¢ Perl's f or k starts a new per | interpreter and

copies the current 'context’ (variables, etc) to it

f or k “CONTEXT”

¢ Perl's f or k starts a new per | interpreter and copies the
current 'context’ (variables, etc) to it

¢ \What does this mean?

¢ It means that it is cloning the current execution of the
per | interpreter (“the script’) and that the “child” per |
process:

¢ Running the same script starting from the call to f or k

¢ Maintains knowledge of all variables and program states

VARENT-CHILD COrTTTUNICATION
ANDT or k

Althought we can set $SI G CHLD} , that's often not sufficient

There is no “interprocess communication” after fork (unlink in real
shared memory threads)

But the parent can completely control the state of the child process at
the time of creation; e.qg. variables

In this way, f or k can be said to be a deep clone the parent executing
per| process (full copy of fork, there are no references preserved)

IPC::Fork::Simple looks interesting, but it's not covered here

PARENT-CHILD COTMTTUNICATION
ANDT or k

What we want.

it

we get.

r:l

What

WHEN TO JEF or k [Nper |

¢ You have a lot of resource intensive “tasks” to
perform

¢ You have access to a “bare metal” machine with
many cores (or many virtual CPUs on somebody
else's computer — s/ cl oud/ butt/)

¢ Task can be dispatched asynchronously and no
IPC is required

EXAITPLE TASKS

¢ Downloading from many URLs (http, ftp, etc)

¢ Uploading many files to multiple resources (e.g.,
back ups to cloud, etc)

¢ Processing many images, documents, or other
files

¢ Regular system-wide crons or “periodic” scripts
that affect a large number of users

VAKT [

Par al | el : : For kManager

¢ Implemented as a very light wrapper around f or k

¢ Makes it straightforward and easy to schedule —
work via f or k efficiently:

¢

*

Set maximum number of child processes

Precise blocking (to maximize system resources)

Specify communication back from child processes (via St or abl e)

Parent level, “event” based callbacks (run_on _wait,run_on_start)

Par al | el : : For kManager

use strict;
use warnings;

use Parallel::ForkManager;
++% | ;

my $pm = Parallel::ForkManager->new(4);

my $i (..) A

print 33

$pm->start and next;

Sleep 1; |
Sleep 5; /
$pm->finish;

Par al | el : : For kManager : : Segnent ed

¢ Built around Parallel::ForkManager

¢ Not a subclass

¢ Primary purpose is for a given list of items (any-
thing in an array or list):

¢ Spawn $npr oc works (# of f or ks)
¢ Process $bat ch_si ze per worker spawned

¢ Using subroutine reference specified by $process _item

Par al | el : : For kManager : . Segnent ed

use strict;
use warnings;

use Parallel::ForkManager::Segmented;
++5 | ;

my @queue = (

Parallel::ForkManager::Segmented->new->run(
{
=> R
=> \@queue,

> sub {

my $item shift;

sleep 1; -Child's bod
print : > y
sleep

return;

MCE = PERL ITULTI-CORE ENGINE

Fundamentally fork based, but maintains a pool of
worker processes that can coordinate and communi-
cate

Can be coupled with async frameworks like AnyEvent

Basically, Par al | el : : For kManager : : Segnent ed
on steroids

Looks well suited to implement things like
map/reduce, definitely on a “higher level” than

MCE = PERL ITULTI-CORE ENGINE

@ Comm channel

- job submissions
@ Data channels

- data gathering

- natural callbacks

@ Output channel |
-MCE events
- high speed

@ Queue channel

- next offset pos
@ Sync channels

- barrier begin/end

‘MCE spawns a pool of workers and therefore does not fork a new
process per each element of data. Instead, MCE follows a bank queu-
ing model. Imagine the line being the data and bank-tellers the parallel
workers. MCE enhances that model by adding the ability to chunk the
next n elements from the input stream to the next available worker.”

https://metacpan.org/pod/MCE

MCE = PEAL I'ULTI-CORE ENGINE

use strict;
use warnings;

use MCE;

my $mce = MCE->new(
=>

=> sub {
my ($mce) = @ ;
$mce->say (sprintf(, $%, $mce->wid));

)

$mce->run;

= PERL IMULTI-CORE ENGINE

Documentation
MCE::Core Documentation describing the core MCE API
MCE::Examples Various examples and demonstrations

Modules

MCE Many-Core Engine for Perl providing parallel processing capabilities
MCE::Candy Sugar methods and output iterators

MCE::Channel Queue-like and two-way communication capability
MCE::Channel::Mutex Channel for producer(s) and many consumers
MCE::Channel::Simple Channel tuned for one producer and one consumer
MCE::Channel::Threads Channel for producer(s) and many consumers

MCE::Child A threads-like parallelization module compatible with Perl 5.8

MCE::Core:Input::Generator Sequence of numbers {for task_id = Q)
MCE::Core:input::Handle File path and Scalar reference input reader
MCE::Core:input:iterator [terator reader

MCE::Core:Input::Request Array reference and Glob reference input reader
MCE::Core:input::Sequence Sequence of numbers {for task_id == 0)

MCE::Core::Manager Caore methods for the manager process
MCE::Core::Validation Core validation methods for Many-Core Engine
MCE::Core::Worker Core methods for the worker process

MCE::Flow Parallel flow model for building creative applications
MCE::Grep Parallel grep model similar to the native grep function
MCE::Loop MCE model for building parallel loops

MCE::Map Parallel map model similar to the native map function
MCE::Mutex Locking for Many-Core Engine

MCE::Mutex::Channel Mutex locking via a pipe or socket
MCE::Mutex::Channel2 Provides two mutexes using a single channel
MCE::Mutex::Flock Mutex locking via Fentl

MCE::Queue Hybrid (normal and priority) gueues

MCE::Relay Extends Many-Core Engine with relay capabilities
MCE::Signal Temporary directory creation/cleanup and signal handling
MCE::Step Parallel step model for building creative steps
MCE::Stream Parallel stream model for chaining multiple maps and greps
MCE::Subs Exports functions mapped directly to MCE methods
MCE::Util Utility functions

SAIMPLING OF INTEKESTING FTODULES

¢ Proc:: Fork

¢ Fork:: Prom se
¢ | PC . Fork::Sinple —
¢ fork: : hook

¢ Much of the Par al | el : : * name space
¢ Coro

¢ AnyEvent

¢ PCE

¢ PDL: : Parall el :: MPI

THANK 1o¢

	Title
	Long-term Goal
	Slide 3
	Slide 4
	Customer Wishes
	Slide 6
	Slide 7
	Fulfilling Customer Needs
	Cost Analysis
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Strengths and Advantages
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Next Steps of Action

